
Ashok Modi – DrupalCampLA 2011

DRUPAL BACKEND
PERFORMANCE AND
SCALABILITY

About me

  Systems Analyst at California Institute of the Arts.
  Working with Drupal since 2006.

 View my profile at http://drupal.org/user/60422
 View my thoughts at http://btmash.com

  Strong interest in server optimization.

About presentation

  Will reference some of the sites I’ve worked on
  Main CalArts site with (too many) modules kept under control.
  CalArts (Photo Site with about 150k pieces of content)
  Zimmer Twins (1M content, ½ M users)

  There is a lot of material to go through.
  Avoid talking about software that has successor.
  May have to speed through some areas (or are you ok with staying around for

longer?)
  Doesn’t really apply to shared hosting

  Only a part of this presentation (code related optimizations?) might apply.

  Have a question? Ask!
  Have something to share? Come on up!

  I am certain there are some very knowledgeable folk in the room…

Resources

  Khalid Baheyeldin
 http://2bits.com

  Drupal.org infrastructure group
 http://groups.drupal.org/high-performance

  Peter Zaitsev
 http://www.mysqlperformanceblog.com/

  Lullabot
 http://lullabot.com/ideas/blog

  Community 

Goals

  Define your objectives and goals first
 Do you want a faster response to the end user per page?
 Do you want to handle more page views?
 Do you want to minimize downtime?

  Each is related…but different
  Gets harder and harder to achieve more performance

 More infrastructure
 Patching / Hacking Drupal
 Revisions to architecture (Fields, Views)

Diagnosis

  Proper diagnosis is essential before proposing and
implementing a solution.

  Based on proper data.
  Analysis of collected data.

 Few possible paths of optimization.

Validation

  Avoid the ‘wild goose chase’.
  Validate results on a test server.
  Replicate the data on a development server.

 Backup and migrate will help.
 Migrate can also help.

  Recreate the site.
  Gather a time difference between test and production

server.
  Measure again and see if relative times remain the

same.

Points of optimization

  Introduction.
  Tools to measure and diagnose issues.
  Speed optimizations.

Introduction – Hardware

  Physical server matters
  Dedicated
  VPS
  Cloud-based

  Anyone here to argue it doesn’t work?

  Multiple cores are the norm
  32 > 16 > 8 > 4 > 2 > 1

  Lots of RAM (caching the file system and db as much as possible)
  Multiple disks (split of the server to various disks and/or servers)

  SSD is much faster than a reg. HDD.
  Look into https://github.com/facebook/flashcache
  FusionIO also looks very promising.
  Tuning DB on SSD is different from tuning DB on HDD

LAMP Stack

  Traditionally most commonly used stack for hosting Drupal and
similar applications.
  Linux
  Apache
  MySQL
  PHP

  A chunk of the presentation will
focus on the above.
  Though we need an acronym involving

V(arnish), A(pachesolr), M(emcache),
M(ongo), N(ginX)

  VLAMNMP? Or VAN LAMMP?
  Not discussing Windows.

  Anyone host Drupal on Windows Server? Would like to know more.

Multiple Servers

  Master DB Server, multiple web servers.
 Use a load balancer (or something like HAProxy or some

other DNS round robin)
 Set up slave database servers for SELECT queries.

  Do it only if you have the budget and resources.
 Complexity is expensive (running cost, maintenance time)
 Tuning a system can avoid or delay

a split.
 A site by 2bits runs on one server.

 Handles 3+ million hits per day.
 Read more at http://goo.gl/XueVY

Testing tools

  Apache Benchmark (DEMO)
  ab –n 100 –c 10 http://www.example.com
  ab –n 10 –c 10 –C PHPSESSID=<sessid> http://www.example.com
  Do 10 concurrent requests for up to 100 requests.
  Average response time per second.
  How many requests handled per second.

  Jmeter
  Similar to Apache Benchmark.
  Can natively use on Windows.
  Can test POST functionality.

  LoadStorm
  Web service to test site.
  Will give pretty graphs in

real time.

Console Monitoring tools

  Top
 Real time monitoring.
 Load average.
 CPU utilization.
 Memory usage.
 List of processes.

  htop
 Similar to top but for multiple cores.
 Faster.

Console Monitoring tools (cont’d)

  atop
 Shows network statistics.
 Runs a collection daemon in the background.

  vmstat
 Report memory statistics

  netstat
 Shows active network connections
 netstat –an
 netstat –an | grep EST

Graphical Monitoring tools

 Cacti
 http://www.cacti.net
 Available as a package on Ubuntu, Debian (various other *nix/bsd flavors)
 Easy to understand graphs.
 Displays history over day, week, month, year.
 Graphs available to display stats for CPU, memory, network, Apache, MySQL
 Many others written by others available online.

 Munin
 http://munin.projects.linpro.no
 Very similar to Cacti (doesn’t require a db)
 Can create own monitoring scripts.

 Nagios
 Heard its very powerful (alerts by email, sms, etc).
 Drupal module for integration.

 Panopta and New Relic offer hosted monitoring

Linux / BSD

  Use a proven stable distribution (Debian Stable, Ubuntu
LTS, RHEL, CentOS)

  Use recent versions
  *Use whatever distro your staff has expertise with
  Try to avoid bloat

 Don’t install PostGreSQL if you are only using MySQL, no
desktop server, java, etc.

  Balance compiling own programs versus using packages.
 Old versions of GD on older versions of Debian, Ubuntu.

  Compiling provides full control.
 Can be a pain to upgrade.

Apache

  Most popular, supported, and feature rich.
  Stable.
  Can also be enabled with too many unnecessary

modules.
 mod_proxy, cgi_module, etc may be unnecessary.
 Smaller process = more users can access site
 apachectl -M – Display all enabled apache modules.

  apachetop
 Reads and analyses Apache access logs.
 Good to detect crawlers.
  ‘apachetop –f /path/to/site/access.log

Apache Optimizations

  MaxClients (prevent swapping / thrashing)
 Too low – cannot serve enough clients
 Too high – you run out of memory and you start swapping.

Server dies and you cannot serve any clients.
  MaxRequestsPerChild

 Tune it to terminate the process faster and free up memory.
  KeepAlive

 Keep it enabled.
 New connects will not get opened constantly.

  mod_gzip/deflate
 Serve more content quickly.

NginX

  http://nginx.net
  Quite stable.
  More lightweight than Apache.
  Reasonably easy to set up.

 http://wiki.nginx.org/Drupal for drupal settings 
  Seeing some promising results in our dev environment so

far…
  Run PHP as FastCGI process.

 Can also do this with Apache (current method for
DrupalCampLA website).
 Also uses less memory.

Varnish

 HTTP accelerator
 Set it up as a reverse proxy to send the call to Apache if it cannot server something

itself
 Serve anonymous page requests and static files

 D6 core will not get served anonymous – use pressflow.
 D7 and varnish play nicely.

 Requires some tuning
 Used on Drupal.org

 Riot Games uses it (@dragonwize might be able to say some more if he’s in the room?)
 Serve millions of pages of content with little impact on server.

 Look at http://drupal.org/project/varnish
 http://goo.gl/8l7gI has some configuration info.
 http://goo.gl/9xQDz has a better explanation 

Varnish (cont’d)

  Define IP/port in backend <name> for each web server.
  Define multiple backends for different servers
  backend b1 {.host=“127.0.0.1”; .port=“8082”}

  Use director to group backends for round robin.
  return (pass) // do not cache any checks you make.

  If (req.url ~ "^.*/ajax/.*$") { return (pass); }

  return (lookup) // lookup in cache or pass it on to backend to get cached.
  unset beresp.http.Set-Cookie; // Unset cookies; What actually allows

caching.
  Lullabot’s article: http://goo.gl/7JFrP
  Basic setup for D7: http://goo.gl/l7601

  Tested on own blog…handled about 3k requests per second (couldn’t figure out
way to break it). Previously handled 30 – 50 requests per second.

MySQL

  Most popular database for Drupal.
  Not necessarily the best database but still does a good job.
  Easy to set up, lots to tune.

  Less to tune in D6 but D7 requires tuning, even for small sites.
  Various pluggable engines (InnoDB, Archive)
  Forks

  MariaDB
  Percona
  Drizzle

  MySQL 5.5 is a big difference.
  More to tune.
  http://goo.gl/hU8tW

MySQL Monitoring

  mtop / mytop
  Like top but for MySQL
  Real time monitoring (no history)
  Shows slow queries and locks.
  If you have neither – SHOW FULL PROCESSLIST

  Mysqlreport
  http://hackmysql.com/mysqlreport
  Reports on server – no recommendations (documentation on site explains a lot)

  Slow Query Log
  Can be enabled in you’re my.cnf file
  List queries more than N seconds
  List queries without indexes.

  Helped identify bottlenecks (one involved a bad count(*) query which I removed)
  mysql_slow_log_parser script (http://goo.gl/4ZHCT)

MySQL Engines

  MyISAM
  Fast reads
  Less overhead
  Poor concurrency

  InnoDB
  Transactional
  Slower in some cases (SELECT COUNT(…))
  Lots of settings to analyze and change
  Better concurrency.

  Forks
  Percona comes with XtraDB (replacement for InnoDB).
  Maria comes with XtraDB.
  Both currently looking to be better options than InnoDB (use Google Patches).
  Same tuning settings.

MySQL Tuning

 There are many (many) settings that could be tuned.
 Talk about the ones most likely to give the largest benefits. (D7 Focused)
 innodb_buffer_pool_size

 Very important.
 Set up to 80% of memory allocated for DB to this.

 If db is small, memory could be used elsewhere.

 innodb_log_file_size
 Important for sites with large write workloads
 64 – 512M

 innodb_flush_log_at_trx_commit
 By default, each update transaction flushes the log which is expensive.
 Set to 0 (write to buffer but no flushes on transaction) or 2 (flush cache instead of disk; both

still flush disk/sec) so flushes happen to OS cache.
 Will lose 1-2 seconds of data if set to 0 if OS crashes. Will have data loss only with full OS crash if

set to 2.

MySQL Tuning (cont’d)

  table_cache
  Opening tables can be expensive.
  Keeps tables open in cache.
  1024 is good place to start.

  thread_cache
  If you have a lot of quick connections, increase the value.

  query_cache_size
  Will cache query results.
  Generally 32M – 512M

  Use mysqlreport to get an idea of what settings to tune.
  Use mysqltuner to help guide you in right direction.

  http://mysqltuner.pl
  Read http://mysqlperformanceblog.com

MySQL Replication

  Used on Drupal.org
  INSERT/DELETE/UPDATE queries go to master
  SELECT queries go to slave(s)

  Provide noticeable improvements.
  D7 supports replication.

  For D6, Pressflow is best bet.
  Beware of complexity (connection bet. Master/slave goes

down, bad things happen).
  Did extensive tuning on Zimmer Twins

 Noticeable improvement despite lack of querying slave server.
  Removed slave server for good.

MongoDB

 Public release in 2009
 Document-oriented

 ‘No-SQL’
 b.collection.insert|add|update({parameters});

 Retrieve subsets (for certain fields / objects)
 Manages collections of objects in JSON-like format.
 { "username" : "bob", "address" : { "street" : "123 Main Street", "city" : "Springfield",

"state" : "NY" } }
 Currently supports up to 64 indexes.

 1 for ascending order, -1 for descending order.
 b.collection.ensureIndex({username: 1, address.state: 1});

 Nested fields can also be indexed.
 Supports master-slave replication. Has automated database sharding.

 Easily create a cluster.

MongoDB (cont’d)

  Module for Drupal exists!
  http://drupal.org/project/mongodb
  Cache, Field Storage, Blocks, Queues, Sessions, Watchdog currently

supported.
  Does a lot of the heavy lifting.
  Very fast (Examiner.com uses it and has disabled page caching despite

high load).
  For anything exported into MongoDB, previous SQL queries will

need to be modified so they become mongo queries.
  For entities, use entityfieldquery

  Anything in this format will actually allow you to switch between SQL
and Mongo (and anything else) without changing code.

  Look at http://drupal.org/project/efq_views for promising work into
even more flexible views 

PHP

  Use a recent, stable release.
 D7 requires 5.2.x, as do a few 6.x contributed modules.
 D8 will require 5.3.x (yes, it’s a ways away ).

  Install an Op-code cacher / accelerator.
  Useful in bringing down memory usage for a site.

 eAccelerator
 APC
 Xcache
 Zend optimizer (commercial)

  Anyone try HipHop?

Running PHP

  mod_php
 Standard php module used by apache.
 Few issues.
 Well tested and supported.
 Can be a resource hog.

  FastCGI (PHP-FPM)
 Can be used with NginX, Apache.
 Runs as a separate process.
 More stable with lower memory usage than mod_php.
 Trickier to install (lots of good doc. online).

Debugging PHP

  Xdebug
 http://xdebug.org
 Display traces on error conditions.
 Trace functions.
 Profile PHP Scripts
 Lots of docs online for installing.

  kCacheGrind
 Provides a visualization on bottlenecks in code.

Op-code Caching

  Benefits
 Lowered memory usage.
 Significant decrease in CPU utilization.
 Usage on http://www.zimmertwins.com lowered memory

usage per process from 20M down to less than 4M
 Usage on http://calarts.edu lowered memory usage per

process from 45M down to less than 10M.

  Drawbacks
 May crash
 May require restarts after updating code (apc.stat = 0)

Op-code Caching (cont’d)

  Op-code caching will not work in all circumstances
 Network connections.
 Sorting arrays.
 DB queries

  Bad modules are bad.

Drupal

  Database intensive.
  Can be a resource hog.
  Memory intensive.

 D7 > D6 > D5
  Site may not be affected by bottleneck.
  Quick Tips

 Disable unnecessary modules.
  If performance is such a concern, sites *can* be made without

Fields / CCK (ZimmerTwins was such a site)
 Views UI, Field UI, Rules UI, <module> UI on production.

 Make sure cron runs regularly.

Drupal Tools

  Devel
  http://drupal.org/project/devel
  Total page execution.
 Query execution time.
 Query log.
 Memory utilization.
 Can be combined with Stress Testing.

  Trace
  http://drupal.org/project/trace
 Use for debugging.
  Traces output, invocations, warnings.
  Filter by Query Type.

Module calls over network

  Email users (og)
  Call web widgets / APIs (youtube, twitter, facebook)
  Cache as much data as possible.

 Use helper modules to aid with reducing bog.
 Queues.
 SMTP Mail module.

Drupal Caching

  Helpful in not querying / processing same bits of content over and over.
  Especially for anonymous users all of whom may be viewing the same

content on your site.
  Many caches in core.

  Bootstrap
  Block
  Field
  Filter
  Form
  Image
  Menu
  Page (only for anonymous)

  Many from contrib modules (like views, rules, media)

Useful contrib caching modules

 EntityCache
 http://drupal.org/project/entitycache
 Caches all core entities (node, user, taxonomy) on entity_load()
 Stays in cache until expiry or until content is updated/deleted.

 Boost
 http://drupal.org/project/boost
 Creates HTML for pages and stores it in files.
 Requires changes to .htaccess file
 Does not load up Drupal once content is cached to file for anon. users.
 Can also use module to display site while in maintenance mode.
 Varnish has mostly replaced this module (though they could play with each other) on sites

not in shared hosting.
 Views content cache
 Block cache alter
 Performance hacks

Pluggable caching

  Use $conf variable in settings.php
  $conf['cache_backends'][]= ‘./path/to/cache_first_mechanism.inc’;
  $conf['cache_backends'][]= ‘./path/to/cache_second_mechanism.inc’;
  $conf[‘cache_class_<bin>’] = ‘CACHECLASS’;
  $conf[‘cache_default_class’] = ‘SECONDCACHECLASS’;

  Allows you to use a custom caching module.
  Can even use this to completely disable caching (DO NOT USE ON A

PRODUCTION SITE!)
  Contrib modules

  Cache Router (D6)
  APC (D7)

  Very fast.
  Limited to caching on one web server (cache cannot get reused over multiple servers –

can be good or bad.)

Memcached

  Distributed object caching in memory.
  Written by danga for LiveJournal
  Lives in memory
  Can span multiple servers.
  Seamless for D6, D7

 D7 is still undergoing some changes.
  Hash own requirements (apache needs to be restarted,

have to clear old caches)
  Slower than APC, but scalable.
  Takes load off DB server (yay!)

Search Mechanism

  Drupal core search
 Need I say anything?
  Search API looks to be a much more promising (not to mention

flexible!) option.
  Pluggable system to support various types of backends.

 Search API MongoDB, Search API Xapian
  Supports Views.
  Proposal to include in D8 (core conversation at DC London).

  LuceneAPI
 Not as fast as ApacheSolr.
  Easy to setup.

  Google CSE might also be a good fit.

ApacheSolr

  ApacheSolr
 Very fast.
 Easy to configure on *nix systems.

 Requires a server on which Java can be installed.

 More and more companies offering Solr as a Service (take
load off your systems altogether).

 Available as Drupal Module.
 Apachesolr (very mature)
 Search API apachesolr (very promising)

 Views Plugin so even drive non-search related pages using
Solr!

Other options

  Using an optimized distribution
  Pressflow (for D6)

  http://fourkitchens.com/pressflow-makes-drupal-scale
 Only supports MySQL
 Cleanly supports reverse proxies such as Varnish
 Optimized for PHP5

  Pressflow for D7 is currently identical to D7
  Talks about abandoning MySQL in favor of a MongoDB/

Cassandra DB architecture.
 Many of the improvements made for Pressflow are in D7 core.

  Keep in mind that a faster Drupal Core won’t save you from
contrib modules behaving badly.

Other options (cont’d)

  Patching Drupal / Contrib
 ‘Hack core’
 Need to know what you are doing.
 Sometimes necessary.
 Create a patches directory where all the changes you

make for a core/contrib file can be tracked and easily
applied on updates.

 Create own module and do any necessary schema
updates / alters from there.

Past experiences from Drupal Core

  User login on zimmertwins.com was painfully slow (5+
seconds per user)
 Gist of problem: DB not using index on username due to lower()
  Bug had been around since 2006.
  Solution: Modified patch on D.O for site.
 User login time down to 0.1 seconds.
  Pressflow avoids this by not allowing case-insensitve login.

  Comments did not have index on user ID
 Created index on user id as an update from my module.
  If added in future, can remove my version of index.
  Loading for comment by user no longer an issue.

Advice for developers

  Take advantage of caching.
  Use memory wisely.

 Unset the variable if you don’t have a need for it later.
 Save variable to memory for future use so processing isn’t

done multiple times (see drupal_static()).
  Take advantage of AHAH functionality

 Fewer queries.
 Not reloading the page.
 Saving bandwidth.

  Learn to use jQuery (same as above).
  Pay close attention to what

Possibly related sessions

  Note: Some have passed (but check out their screencasts)
  Drupal on the Cloud

  Patrick Wall
  Drupal Development Q&A
  Drupal 7 Q&A
  Building APIs

 Adam Gregory
  Professional Staging and Deployment

 Christefano
  Understanding Ctools

 Helior Colorado

Questions

  Have a question?
  Want to talk more about performance?

 Let’s talk after 

  Think you can help with Drupal performance?
 http://goo.gl/I3PN2

  Thank you 

