
Ashok Modi – DrupalCampLA 2011

DRUPAL BACKEND
PERFORMANCE AND
SCALABILITY

About me

  Systems Analyst at California Institute of the Arts.
  Working with Drupal since 2006.

 View my profile at http://drupal.org/user/60422
 View my thoughts at http://btmash.com

  Strong interest in server optimization.

About presentation

  Will reference some of the sites I’ve worked on
  Main CalArts site with (too many) modules kept under control.
  CalArts (Photo Site with about 150k pieces of content)
  Zimmer Twins (1M content, ½ M users)

  There is a lot of material to go through.
  Avoid talking about software that has successor.
  May have to speed through some areas (or are you ok with staying around for

longer?)
  Doesn’t really apply to shared hosting

  Only a part of this presentation (code related optimizations?) might apply.

  Have a question? Ask!
  Have something to share? Come on up!

  I am certain there are some very knowledgeable folk in the room…

Resources

  Khalid Baheyeldin
 http://2bits.com

  Drupal.org infrastructure group
 http://groups.drupal.org/high-performance

  Peter Zaitsev
 http://www.mysqlperformanceblog.com/

  Lullabot
 http://lullabot.com/ideas/blog

  Community

Goals

  Define your objectives and goals first
 Do you want a faster response to the end user per page?
 Do you want to handle more page views?
 Do you want to minimize downtime?

  Each is related…but different
  Gets harder and harder to achieve more performance

 More infrastructure
 Patching / Hacking Drupal
 Revisions to architecture (Fields, Views)

Diagnosis

  Proper diagnosis is essential before proposing and
implementing a solution.

  Based on proper data.
  Analysis of collected data.

 Few possible paths of optimization.

Validation

  Avoid the ‘wild goose chase’.
  Validate results on a test server.
  Replicate the data on a development server.

 Backup and migrate will help.
 Migrate can also help.

  Recreate the site.
  Gather a time difference between test and production

server.
  Measure again and see if relative times remain the

same.

Points of optimization

  Introduction.
  Tools to measure and diagnose issues.
  Speed optimizations.

Introduction – Hardware

  Physical server matters
  Dedicated
  VPS
  Cloud-based

  Anyone here to argue it doesn’t work?

  Multiple cores are the norm
  32 > 16 > 8 > 4 > 2 > 1

  Lots of RAM (caching the file system and db as much as possible)
  Multiple disks (split of the server to various disks and/or servers)

  SSD is much faster than a reg. HDD.
  Look into https://github.com/facebook/flashcache
  FusionIO also looks very promising.
  Tuning DB on SSD is different from tuning DB on HDD

LAMP Stack

  Traditionally most commonly used stack for hosting Drupal and
similar applications.
  Linux
  Apache
  MySQL
  PHP

  A chunk of the presentation will
focus on the above.
  Though we need an acronym involving

V(arnish), A(pachesolr), M(emcache),
M(ongo), N(ginX)

  VLAMNMP? Or VAN LAMMP?
  Not discussing Windows.

  Anyone host Drupal on Windows Server? Would like to know more.

Multiple Servers

  Master DB Server, multiple web servers.
 Use a load balancer (or something like HAProxy or some

other DNS round robin)
 Set up slave database servers for SELECT queries.

  Do it only if you have the budget and resources.
 Complexity is expensive (running cost, maintenance time)
 Tuning a system can avoid or delay

a split.
 A site by 2bits runs on one server.

 Handles 3+ million hits per day.
 Read more at http://goo.gl/XueVY

Testing tools

  Apache Benchmark (DEMO)
  ab –n 100 –c 10 http://www.example.com
  ab –n 10 –c 10 –C PHPSESSID=<sessid> http://www.example.com
  Do 10 concurrent requests for up to 100 requests.
  Average response time per second.
  How many requests handled per second.

  Jmeter
  Similar to Apache Benchmark.
  Can natively use on Windows.
  Can test POST functionality.

  LoadStorm
  Web service to test site.
  Will give pretty graphs in

real time.

Console Monitoring tools

  Top
 Real time monitoring.
 Load average.
 CPU utilization.
 Memory usage.
 List of processes.

  htop
 Similar to top but for multiple cores.
 Faster.

Console Monitoring tools (cont’d)

  atop
 Shows network statistics.
 Runs a collection daemon in the background.

  vmstat
 Report memory statistics

  netstat
 Shows active network connections
 netstat –an
 netstat –an | grep EST

Graphical Monitoring tools

 Cacti
 http://www.cacti.net
 Available as a package on Ubuntu, Debian (various other *nix/bsd flavors)
 Easy to understand graphs.
 Displays history over day, week, month, year.
 Graphs available to display stats for CPU, memory, network, Apache, MySQL
 Many others written by others available online.

 Munin
 http://munin.projects.linpro.no
 Very similar to Cacti (doesn’t require a db)
 Can create own monitoring scripts.

 Nagios
 Heard its very powerful (alerts by email, sms, etc).
 Drupal module for integration.

 Panopta and New Relic offer hosted monitoring

Linux / BSD

  Use a proven stable distribution (Debian Stable, Ubuntu
LTS, RHEL, CentOS)

  Use recent versions
  *Use whatever distro your staff has expertise with
  Try to avoid bloat

 Don’t install PostGreSQL if you are only using MySQL, no
desktop server, java, etc.

  Balance compiling own programs versus using packages.
 Old versions of GD on older versions of Debian, Ubuntu.

  Compiling provides full control.
 Can be a pain to upgrade.

Apache

  Most popular, supported, and feature rich.
  Stable.
  Can also be enabled with too many unnecessary

modules.
 mod_proxy, cgi_module, etc may be unnecessary.
 Smaller process = more users can access site
 apachectl -M – Display all enabled apache modules.

  apachetop
 Reads and analyses Apache access logs.
 Good to detect crawlers.
  ‘apachetop –f /path/to/site/access.log

Apache Optimizations

  MaxClients (prevent swapping / thrashing)
 Too low – cannot serve enough clients
 Too high – you run out of memory and you start swapping.

Server dies and you cannot serve any clients.
  MaxRequestsPerChild

 Tune it to terminate the process faster and free up memory.
  KeepAlive

 Keep it enabled.
 New connects will not get opened constantly.

  mod_gzip/deflate
 Serve more content quickly.

NginX

  http://nginx.net
  Quite stable.
  More lightweight than Apache.
  Reasonably easy to set up.

 http://wiki.nginx.org/Drupal for drupal settings
  Seeing some promising results in our dev environment so

far…
  Run PHP as FastCGI process.

 Can also do this with Apache (current method for
DrupalCampLA website).
 Also uses less memory.

Varnish

 HTTP accelerator
 Set it up as a reverse proxy to send the call to Apache if it cannot server something

itself
 Serve anonymous page requests and static files

 D6 core will not get served anonymous – use pressflow.
 D7 and varnish play nicely.

 Requires some tuning
 Used on Drupal.org

 Riot Games uses it (@dragonwize might be able to say some more if he’s in the room?)
 Serve millions of pages of content with little impact on server.

 Look at http://drupal.org/project/varnish
 http://goo.gl/8l7gI has some configuration info.
 http://goo.gl/9xQDz has a better explanation

Varnish (cont’d)

  Define IP/port in backend <name> for each web server.
  Define multiple backends for different servers
  backend b1 {.host=“127.0.0.1”; .port=“8082”}

  Use director to group backends for round robin.
  return (pass) // do not cache any checks you make.

  If (req.url ~ "^.*/ajax/.*$") { return (pass); }

  return (lookup) // lookup in cache or pass it on to backend to get cached.
  unset beresp.http.Set-Cookie; // Unset cookies; What actually allows

caching.
  Lullabot’s article: http://goo.gl/7JFrP
  Basic setup for D7: http://goo.gl/l7601

  Tested on own blog…handled about 3k requests per second (couldn’t figure out
way to break it). Previously handled 30 – 50 requests per second.

MySQL

  Most popular database for Drupal.
  Not necessarily the best database but still does a good job.
  Easy to set up, lots to tune.

  Less to tune in D6 but D7 requires tuning, even for small sites.
  Various pluggable engines (InnoDB, Archive)
  Forks

  MariaDB
  Percona
  Drizzle

  MySQL 5.5 is a big difference.
  More to tune.
  http://goo.gl/hU8tW

MySQL Monitoring

  mtop / mytop
  Like top but for MySQL
  Real time monitoring (no history)
  Shows slow queries and locks.
  If you have neither – SHOW FULL PROCESSLIST

  Mysqlreport
  http://hackmysql.com/mysqlreport
  Reports on server – no recommendations (documentation on site explains a lot)

  Slow Query Log
  Can be enabled in you’re my.cnf file
  List queries more than N seconds
  List queries without indexes.

  Helped identify bottlenecks (one involved a bad count(*) query which I removed)
  mysql_slow_log_parser script (http://goo.gl/4ZHCT)

MySQL Engines

  MyISAM
  Fast reads
  Less overhead
  Poor concurrency

  InnoDB
  Transactional
  Slower in some cases (SELECT COUNT(…))
  Lots of settings to analyze and change
  Better concurrency.

  Forks
  Percona comes with XtraDB (replacement for InnoDB).
  Maria comes with XtraDB.
  Both currently looking to be better options than InnoDB (use Google Patches).
  Same tuning settings.

MySQL Tuning

 There are many (many) settings that could be tuned.
 Talk about the ones most likely to give the largest benefits. (D7 Focused)
 innodb_buffer_pool_size

 Very important.
 Set up to 80% of memory allocated for DB to this.

 If db is small, memory could be used elsewhere.

 innodb_log_file_size
 Important for sites with large write workloads
 64 – 512M

 innodb_flush_log_at_trx_commit
 By default, each update transaction flushes the log which is expensive.
 Set to 0 (write to buffer but no flushes on transaction) or 2 (flush cache instead of disk; both

still flush disk/sec) so flushes happen to OS cache.
 Will lose 1-2 seconds of data if set to 0 if OS crashes. Will have data loss only with full OS crash if

set to 2.

MySQL Tuning (cont’d)

  table_cache
  Opening tables can be expensive.
  Keeps tables open in cache.
  1024 is good place to start.

  thread_cache
  If you have a lot of quick connections, increase the value.

  query_cache_size
  Will cache query results.
  Generally 32M – 512M

  Use mysqlreport to get an idea of what settings to tune.
  Use mysqltuner to help guide you in right direction.

  http://mysqltuner.pl
  Read http://mysqlperformanceblog.com

MySQL Replication

  Used on Drupal.org
  INSERT/DELETE/UPDATE queries go to master
  SELECT queries go to slave(s)

  Provide noticeable improvements.
  D7 supports replication.

  For D6, Pressflow is best bet.
  Beware of complexity (connection bet. Master/slave goes

down, bad things happen).
  Did extensive tuning on Zimmer Twins

 Noticeable improvement despite lack of querying slave server.
  Removed slave server for good.

MongoDB

 Public release in 2009
 Document-oriented

 ‘No-SQL’
 b.collection.insert|add|update({parameters});

 Retrieve subsets (for certain fields / objects)
 Manages collections of objects in JSON-like format.
 { "username" : "bob", "address" : { "street" : "123 Main Street", "city" : "Springfield",

"state" : "NY" } }
 Currently supports up to 64 indexes.

 1 for ascending order, -1 for descending order.
 b.collection.ensureIndex({username: 1, address.state: 1});

 Nested fields can also be indexed.
 Supports master-slave replication. Has automated database sharding.

 Easily create a cluster.

MongoDB (cont’d)

  Module for Drupal exists!
  http://drupal.org/project/mongodb
  Cache, Field Storage, Blocks, Queues, Sessions, Watchdog currently

supported.
  Does a lot of the heavy lifting.
  Very fast (Examiner.com uses it and has disabled page caching despite

high load).
  For anything exported into MongoDB, previous SQL queries will

need to be modified so they become mongo queries.
  For entities, use entityfieldquery

  Anything in this format will actually allow you to switch between SQL
and Mongo (and anything else) without changing code.

  Look at http://drupal.org/project/efq_views for promising work into
even more flexible views

PHP

  Use a recent, stable release.
 D7 requires 5.2.x, as do a few 6.x contributed modules.
 D8 will require 5.3.x (yes, it’s a ways away).

  Install an Op-code cacher / accelerator.
  Useful in bringing down memory usage for a site.

 eAccelerator
 APC
 Xcache
 Zend optimizer (commercial)

  Anyone try HipHop?

Running PHP

  mod_php
 Standard php module used by apache.
 Few issues.
 Well tested and supported.
 Can be a resource hog.

  FastCGI (PHP-FPM)
 Can be used with NginX, Apache.
 Runs as a separate process.
 More stable with lower memory usage than mod_php.
 Trickier to install (lots of good doc. online).

Debugging PHP

  Xdebug
 http://xdebug.org
 Display traces on error conditions.
 Trace functions.
 Profile PHP Scripts
 Lots of docs online for installing.

  kCacheGrind
 Provides a visualization on bottlenecks in code.

Op-code Caching

  Benefits
 Lowered memory usage.
 Significant decrease in CPU utilization.
 Usage on http://www.zimmertwins.com lowered memory

usage per process from 20M down to less than 4M
 Usage on http://calarts.edu lowered memory usage per

process from 45M down to less than 10M.

  Drawbacks
 May crash
 May require restarts after updating code (apc.stat = 0)

Op-code Caching (cont’d)

  Op-code caching will not work in all circumstances
 Network connections.
 Sorting arrays.
 DB queries

  Bad modules are bad.

Drupal

  Database intensive.
  Can be a resource hog.
  Memory intensive.

 D7 > D6 > D5
  Site may not be affected by bottleneck.
  Quick Tips

 Disable unnecessary modules.
  If performance is such a concern, sites *can* be made without

Fields / CCK (ZimmerTwins was such a site)
 Views UI, Field UI, Rules UI, <module> UI on production.

 Make sure cron runs regularly.

Drupal Tools

  Devel
  http://drupal.org/project/devel
  Total page execution.
 Query execution time.
 Query log.
 Memory utilization.
 Can be combined with Stress Testing.

  Trace
  http://drupal.org/project/trace
 Use for debugging.
  Traces output, invocations, warnings.
  Filter by Query Type.

Module calls over network

  Email users (og)
  Call web widgets / APIs (youtube, twitter, facebook)
  Cache as much data as possible.

 Use helper modules to aid with reducing bog.
 Queues.
 SMTP Mail module.

Drupal Caching

  Helpful in not querying / processing same bits of content over and over.
  Especially for anonymous users all of whom may be viewing the same

content on your site.
  Many caches in core.

  Bootstrap
  Block
  Field
  Filter
  Form
  Image
  Menu
  Page (only for anonymous)

  Many from contrib modules (like views, rules, media)

Useful contrib caching modules

 EntityCache
 http://drupal.org/project/entitycache
 Caches all core entities (node, user, taxonomy) on entity_load()
 Stays in cache until expiry or until content is updated/deleted.

 Boost
 http://drupal.org/project/boost
 Creates HTML for pages and stores it in files.
 Requires changes to .htaccess file
 Does not load up Drupal once content is cached to file for anon. users.
 Can also use module to display site while in maintenance mode.
 Varnish has mostly replaced this module (though they could play with each other) on sites

not in shared hosting.
 Views content cache
 Block cache alter
 Performance hacks

Pluggable caching

  Use $conf variable in settings.php
  $conf['cache_backends'][]= ‘./path/to/cache_first_mechanism.inc’;
  $conf['cache_backends'][]= ‘./path/to/cache_second_mechanism.inc’;
  $conf[‘cache_class_<bin>’] = ‘CACHECLASS’;
  $conf[‘cache_default_class’] = ‘SECONDCACHECLASS’;

  Allows you to use a custom caching module.
  Can even use this to completely disable caching (DO NOT USE ON A

PRODUCTION SITE!)
  Contrib modules

  Cache Router (D6)
  APC (D7)

  Very fast.
  Limited to caching on one web server (cache cannot get reused over multiple servers –

can be good or bad.)

Memcached

  Distributed object caching in memory.
  Written by danga for LiveJournal
  Lives in memory
  Can span multiple servers.
  Seamless for D6, D7

 D7 is still undergoing some changes.
  Hash own requirements (apache needs to be restarted,

have to clear old caches)
  Slower than APC, but scalable.
  Takes load off DB server (yay!)

Search Mechanism

  Drupal core search
 Need I say anything?
  Search API looks to be a much more promising (not to mention

flexible!) option.
  Pluggable system to support various types of backends.

 Search API MongoDB, Search API Xapian
  Supports Views.
  Proposal to include in D8 (core conversation at DC London).

  LuceneAPI
 Not as fast as ApacheSolr.
  Easy to setup.

  Google CSE might also be a good fit.

ApacheSolr

  ApacheSolr
 Very fast.
 Easy to configure on *nix systems.

 Requires a server on which Java can be installed.

 More and more companies offering Solr as a Service (take
load off your systems altogether).

 Available as Drupal Module.
 Apachesolr (very mature)
 Search API apachesolr (very promising)

 Views Plugin so even drive non-search related pages using
Solr!

Other options

  Using an optimized distribution
  Pressflow (for D6)

  http://fourkitchens.com/pressflow-makes-drupal-scale
 Only supports MySQL
 Cleanly supports reverse proxies such as Varnish
 Optimized for PHP5

  Pressflow for D7 is currently identical to D7
  Talks about abandoning MySQL in favor of a MongoDB/

Cassandra DB architecture.
 Many of the improvements made for Pressflow are in D7 core.

  Keep in mind that a faster Drupal Core won’t save you from
contrib modules behaving badly.

Other options (cont’d)

  Patching Drupal / Contrib
 ‘Hack core’
 Need to know what you are doing.
 Sometimes necessary.
 Create a patches directory where all the changes you

make for a core/contrib file can be tracked and easily
applied on updates.

 Create own module and do any necessary schema
updates / alters from there.

Past experiences from Drupal Core

  User login on zimmertwins.com was painfully slow (5+
seconds per user)
 Gist of problem: DB not using index on username due to lower()
  Bug had been around since 2006.
  Solution: Modified patch on D.O for site.
 User login time down to 0.1 seconds.
  Pressflow avoids this by not allowing case-insensitve login.

  Comments did not have index on user ID
 Created index on user id as an update from my module.
  If added in future, can remove my version of index.
  Loading for comment by user no longer an issue.

Advice for developers

  Take advantage of caching.
  Use memory wisely.

 Unset the variable if you don’t have a need for it later.
 Save variable to memory for future use so processing isn’t

done multiple times (see drupal_static()).
  Take advantage of AHAH functionality

 Fewer queries.
 Not reloading the page.
 Saving bandwidth.

  Learn to use jQuery (same as above).
  Pay close attention to what

Possibly related sessions

  Note: Some have passed (but check out their screencasts)
  Drupal on the Cloud

  Patrick Wall
  Drupal Development Q&A
  Drupal 7 Q&A
  Building APIs

 Adam Gregory
  Professional Staging and Deployment

 Christefano
  Understanding Ctools

 Helior Colorado

Questions

  Have a question?
  Want to talk more about performance?

 Let’s talk after

  Think you can help with Drupal performance?
 http://goo.gl/I3PN2

  Thank you

