DRUPAL BACKEND
PERFORMANCE AND
SCALABILITY

About me

Systems Analyst at California Institute of the Arts.
Working with Drupal since 2006.

View my profile at

View my thoughts at

Strong interest in server optimization.

About presentation

Will reference some of the sites I've worked on
Main CalArts site with (too many) modules kept under control.
CalArts (Photo Site with about 150k pieces of content)
Zimmer Twins (1M content, 2 M users)

There is a lot of material to go through.
Avoid talking about software that has successor.

May have to speed through some areas (or are you ok with staying around for
longer?)

Doesn’t really apply to shared hosting

Only a part of this presentation (code related optimizations?) might apply.
Have a question? Ask!
Have something to share? Come on up!

| am certain there are some very knowledgeable folk in the room...

Resources

Khalid Baheyeldin

Drupal.org infrastructure group
Peter Laitsev

Lullabot

Community ©

Goals

Define your objectives and goals first
Do you want a faster response to the end user per page?
Do you want to handle more page views?

Do you want to minimize downtime?

Each is related...but different

Gets harder and harder to achieve more performance
More infrastructure
Patching / Hacking Drupal

Revisions to architecture (Fields, Views)

Diagnosis

Proper diagnosis is essential before proposing and
implementing a solution.
Based on proper data.

Analysis of collected data.

Few possible paths of optimization.

Validation

Avoid the ‘wild goose chase’.
Validate results on a test server.
Replicate the data on a development server.

Backup and migrate will help.

Migrate can also help.
Recreate the site.

Gather a time difference between test and production
server.

Measure again and see if relative times remain the
same.

Points of optimization

Introduction.
Tools to measure and diagnose issues.

Speed optimizations.

Introduction — Hardware

Physical server matters

Dedicated

VPS

Cloud-based

Anyone here to argue it doesn’t work?

Multiple cores are the norm

32>16>8>4>2>1
Lots of RAM (caching the file system and db as much as possible)
Multiple disks (split of the server to various disks and/or servers)

SSD is much faster than a reg. HDD.
Look into

FusionlO also looks very promising.
Tuning DB on SSD is different from tuning DB on HDD

LAMP Stack

Traditionally most commonly used stack for hosting Drupal and
similar applications.

Linux The Stack
Apache ,
MYSQL Web SQL Queries
Browser | Apache PHP Ko
PHP
A chunk of the presentation will [=] o I 2 O] R A I
focus on the above.
Though we need an acronym involving
V(arnish), A(pachesolr), M(emcache),

M(ongo), N(ginX)
VLAMNMP2 Or VAN LAMMP?
Not discussing Windows.

Anyone host Drupal on Windows Server? Would like to know more.

Multiple Servers

Master DB Server, multiple web servers.

Use a load balancer (or something like HAProxy or some
other DNS round robin)

Set up slave database servers for SELECT queries.

Do it only if you have the budget and resources.

Complexity is expensive (running cost, maintenance time)

Tuning a system can avoid or delay
a split.
A site by 2bits runs on one server.

Handles 3+ million hits per day. { = =
05 (o

[ooHaoggauﬂééJ

Read more at

Testing tools

Apache Benchmark (DEMO)
ab—n 100 — 10

ab —n 10 —c 10 —C PHPSESSID=<sessid>

Do 10 concurrent requests for up to 100 requests.

Average response time per second.

How many requests handled per second.
Jmeter

Similar to Apache Benchmark. |

Can natively use on Windows. | 1o e O

Can test POST functionality.
LoadStorm

Web service to test site.

Will give pretty graphs in \ , | | .
real time. R)

Console Monitoring tools

&N 0O Terminal — top — 145x33

Processes: 88 total, 3 running, 85 sleeping, 396 threads
Load Avg: 0.60, 0.45, 0.35 C(PU usage: 15.16% user, 7.58% sys, 77.25% idle SharedLibs: 10M resident, 4876K data, @B linkedit.
O MemRegions: 17091 total, 767M resident, 26M private, 494M shared. PhysMem: 401M wired, 1199M active, 490M inactive, 2089M used, 2005M free.
VM: 181G vsize, 1039M framework vsize, 154214(0) pageins, 0(0) pageouts. Networks: packets: 81796/57M in, 70807/11M out.
Disks: 74677/1629M read, 22453/356M written.

PID COMMAND %CPU
1352 screencaptur 0.0

Real time monitoring. &=

Load average. S
CPU vtilization.

#TH #WQ #POR #MREG RPRVT RSHRD RSIZE VSIZE PGRP PPID STATE uIo
41 82 476K 1M 2808K 2664M 353 1 sleeping 502
11 361 148K 65M 676K 766M 665 sleeping 502
11 361 144K 65M 676K 766M 665 sleeping 502
11 361 148K 65M 676K 766M 665 sleeping 502
28 33 3600K 264K 4180K 2378M running @
368 4612K 65M 25M 768M sleeping 502
28 540K 1276K 2378M sleeping @ 59
361 368K 1916K 766M sleeping 502 73
368 4348K 224 768M sleeping 502 295
361 368K 1916K 766M sleeping 502 74
368 4720K 768M sleeping 502 302
369 5448K 769M sleeping 502 336
420 5016K 770M sleeping 502 366
368 4768K 768M sleeping 502 321
360 280K 766M sleeping 502 60
25 384K 2378M sleeping 502 202
54 464K 2379 sleeping @ 101
111 4664K 270™M sleeping 502 267
361 68K 766M sleeping @ 620
89 1™ 634M sleeping 502 510
24 208K 2378M sleeping 502 561
112- 8000K- 907M- sleeping 502 693
e 478 3™ 1096M sleeping 502 39178+
.0 346 2™ 1080M running 502 76238+ 9235229+
Google Chrom 0.0 146 997M sleeping 502 1024 8137
Google Chrom 0.0 100, 997M sleeping 502 1030 13385

E
:00.

=

(0 L (U) el 11)

TIM

00
0.0 00
0.0 00
0.0 00
53 00
0.0 00
0.0 00:
0.0 00
0.0 00
0.0 00
0.0 00:
0.0 00
0.0 00
0.0 00
0.0 00
0.0 00
0.0 00:
0.5 00:
0.0 00
0.0 00
0.0 00
0.0 00
20 05
02
00

Memory usage.

S

List of processes.

htop
Similar to top but for multiple cores.

Faster.

Console Monitoring tools (cont’d)

atop

Shows network statistics.

Runs a collection daemon in the background.
vmstat

Report memory statistics
nefstat

Shows active network connections

hetstat —an

netstat —an | grep EST

Graphical Monitoring tools

Cacti

Available as a package on Ubuntu, Debian (various other *nix /bsd flavors)
Easy to understand graphs.

Displays history over day, week, month, year.

Graphs available to display stats for CPU, memory, network, Apache, MySQL

Many others written by others available online.

Munin

Very similar to Cacti (doesn’t require a db)
Can create own monitoring scripts.
Nagios
Heard its very powerful (alerts by email, sms, etc).
Drupal module for integration.

Panopta and New Relic offer hosted monitoring

Linux / BSD

Use a proven stable distribution (Debian Stable, Ubuntu
LTS, RHEL, CentQS)

Use recent versions
*Use whatever distro your staff has expertise with

Try to avoid bloat

Don'’t install PostGreSQL if you are only using MySQL, no
desktop server, java, etc.

Balance compiling own programs versus using packages.
Old versions of GD on older versions of Debian, Ubuntu.

Compiling provides full control.
Can be a pain to upgrade.

Apache

Most popular, supported, and feature rich.

Stable.
Can also be enabled with too many unnecessary
modoules.
mod_proxy, cgi_module, etc may be unnecessary.
Smaller process = more users can access site
apachectl -M — Display all enabled apache modules.
apachetop
Reads and analyses Apache access logs.
Good to detect crawlers.
‘apachetop —f /path/to/site /access.log

Apache Optimizations

MaxClients (prevent swapping / thrashing)
Too low — cannot serve enough clients

Too high — you run out of memory and you start swapping.
Server dies and you cannot serve any clients.

MaxRequestsPerChild
Tune it to terminate the process faster and free up memory.
KeepAlive

Keep it enabled.
New connects will not get opened constantly.

mod_gzip/deflate

Serve more content quickly.

NginX

Quite stable.
More lightweight than Apache.
Reasonably easy to set up.
for drupal settings ©

Seeing some promising results in our dev environment so
fdrooo

Run PHP as FastCGl process.

Can also do this with Apache (current method for
DrupalCamplLA website).

Also uses less memory.

Varnish

HTTP accelerator

Set it up as a reverse proxy to send the call to Apache if it cannot server something
itself

Serve anonymous page requests and static files
D6 core will not get served anonymous — use pressflow.

D7 and varnish play nicely.
Requires some tuning

Used on Drupal.org
Riot Games uses it (@dragonwize might be able to say some more if he’s in the room?)

Serve millions of pages of content with little impact on server.
Look at
has some configuration info.

has a better explanation ©

Varnish (cont’d)

Define IP /port in backend <name> for each web server.
Define multiple backends for different servers

backend b1 {host="127.0.0.1"; .port=“8082"}
Use director to group backends for round robin.
return (pass) // do not cache any checks you make.
If (req.url ~ "M*/ajax/.*$") { return (pass); }
return (lookup) // lookup in cache or pass it on to backend to get cached.

unset beresp.http.Set-Cookie; // Unset cookies; What actually allows
caching.

Lullabot’s article:

Basic setup for D7:

Tested on own blog...handled about 3k requests per second (couldn’t figure out
way to break it). Previously handled 30 — 50 requests per second.

MySQL

Most popular database for Drupal.
Not necessarily the best database but still does a good job.
Easy to set up, lots to tune.

Less to tune in D6 but D7 requires tuning, even for small sites.
Various pluggable engines (InnoDB, Archive)
Forks

MariaDB

Percona

Drizzle

MySQL 5.5 is a big difference.

More to tune.

MySQL Monitoring

mtop / mytop
Like top but for MySQL

Real time monitoring (no history)
Shows slow queries and locks.
If you have neither — SHOW FULL PROCESSLIST

Mysqlreport

Reports on server — no recommendations (documentation on site explains a lot)

Slow Query Log
Can be enabled in you're my.cnf file
List queries more than N seconds

List queries without indexes.
Helped identify bottlenecks (one involved a bad count(*) query which | removed)

mysql_slow_log_parser script ()

MySQL Engines

MYISAM
Fast reads
Less overhead

Poor concurrency

InnoDB
Transactional
Slower in some cases (SELECT COUNT(...))
Lots of settings to analyze and change

Better concurrency.
Forks

Percona comes with XtraDB (replacement for InnoDB).
Maria comes with XtraDB.
Both currently looking to be better options than InnoDB (use Google Patches).

Same tuning settings.

MySQL Tuning

There are many (many) settings that could be tuned.
Talk about the ones most likely to give the largest benefits. (D7 Focused)

innodb_buffer_pool_size
Very important.
Set up to 80% of memory allocated for DB to this.
If db is small, memory could be used elsewhere.
innodb_log_file_size
Important for sites with large write workloads
64 - 512M

innodb_flush_log_at_trx_commit
By default, each update transaction flushes the log which is expensive.

Set to O (write to buffer but no flushes on transaction) or 2 (flush cache instead of disk; both
still flush disk /sec) so flushes happen to OS cache.

Will lose 1-2 seconds of data if set to O if OS crashes. Will have data loss only with full OS crash if
set to 2.

MyYSQL Tuning (cont’d)

table cache
Opening tables can be expensive.
Keeps tables open in cache.

1024 is good place to start.

thread cache
If you have a lot of quick connections, increase the value.

query_cache_size
Will cache query results.
Generally 32M = 512M

Use mysqglreport to get an idea of what settings to tune.

Use mysqltuner to help guide you in right direction.

Read

MySQL Replication

Used on Drupal.org
INSERT /DELETE /UPDATE queries go to master

SELECT queries go to slave(s)
Provide noticeable improvements.
D7 supports replication.

For D6, Pressflow is best bet.

Beware of complexity (connection bet. Master /slave goes
down, bad things happen).

Did extensive tuning on Zimmer Twins

Noticeable improvement despite lack of querying slave server.

Removed slave server for good.

MongoDB

Public release in 2009
Document-oriented

‘No-SQL’

b.collection.insert | add | update({parameters});
Retrieve subsets (for certain fields / objects)

Manages collections of objects in JSON-like format.

{ "username" : "bob", "address" : { "street" : "123 Main Street", "city" : "Springfield”,
"state" : "NY" } }

Currently supports up to 64 indexes.

1 for ascending order, -1 for descending order.

b.collection.ensurelndex({username: 1, address.state: 1});
Nested fields can also be indexed.

Supports master-slave replication. Has automated database sharding.

Easily create a cluster.

MongoDB (cont’d)

Module for Drupal exists!

Cache, Field Storage, Blocks, Queues, Sessions, Watchdog currently
supported.

Does a lot of the heavy lifting.
Very fast (Examiner.com uses it and has disabled page caching despite
high load).
For anything exported into MongoDB, previous SQL queries will
need to be modified so they become mongo queries.
For entities, use entityfieldquery

Anything in this format will actually allow you to switch between SQL
and Mongo (and anything else) without changing code.

Look at for promising work into
even more flexible views ©

PHP

Use a recent, stable release.
D7 requires 5.2.x, as do a few 6.x contributed modules.

D8 will require 5.3.x (yes, it's a ways away ©).
Install an Op-code cacher / accelerator.

Useful in bringing down memory usage for a site.
eAccelerator
APC
Xcache

Zend optimizer (commercial)

Anyone try HipHop?

Running PHP

mod_php
Standard php module used by apache.
Few issues.
Well tested and supported.

Can be a resource hog.

FastCGl (PHP-FPM)
Can be used with NginX, Apache.
Runs as a separate process.
More stable with lower memory usage than mod_php.

Trickier to install (lots of good doc. online).

Debugging PHP

Xdebug

Display traces on error conditions.
Trace functions.

Profile PHP Scripts

Lots of docs online for installing.

kCacheGrind

Provides a visualization on bottlenecks in code.

Op-code Caching

Benefits
Lowered memory usage.
Significant decrease in CPU utilization.

Usage on lowered memory
usage per process from 20M down to less than 4M

Usage on lowered memory usage per
process from 45M down to less than 1OM.

Drawbacks

May crash

May require restarts after updating code (apc.stat = 0)

Op-code Caching (cont’d)

Op-code caching will not work in all circumstances
Network connections.
Sorting arrays.

DB queries

Bad modules are bad.

Drupal

Database intensive.
Can be a resource hog,.
Memory intensive.
D7 > D6 > D5
Site may not be affected by bottleneck.
Quick Tips

Disable unnecessary modules.

If performance is such a concern, sites *can™ be made without
Fields / CCK (ZimmerTwins was such a site)

Views UI, Field Ul, Rules Ul, <module> Ul on production.

Make sure cron runs regularly.

Drupal Tools

Devel

Total page execution.
Query execution time.
Query log.

Memory utilization.

Can be combined with Stress Testing.

Trace

Use for debugging.
Traces output, invocations, warnings.
Filter by Query Type.

Module calls over network

Email users (og)
Call web widgets / APIls (youtube, twitter, facebook)

Cache as much data as possible.

Use helper modules to aid with reducing bog.

Quevues.
SMTP Mail module.

Drupal Caching

Helpful in not querying / processing same bits of content over and over.

Especially for anonymous users all of whom may be viewing the same
content on your site.
Many caches in core.

Bootstrap

Block

Field

Filter

Form

Image

Menu

Page (only for anonymous)

Many from contrib modules (like views, rules, media)

Useful contrib caching modules

EntityCache

Caches all core entities (node, user, taxonomy) on entity_load()

Stays in cache until expiry or until content is updated/deleted.

Boost

Creates HTML for pages and stores it in files.

Requires changes to .htaccess file

Does not load up Drupal once content is cached to file for anon. users.
Can also use module to display site while in maintenance mode.

Varnish has mostly replaced this module (though they could play with each other) on sites
not in shared hosting.

Views content cache
Block cache alter

Performance hacks

Pluggable caching

Use $conf variable in settings.php
$conf['cache_backends'|[]1= ‘./path/to /cache_first_mechanism.inc’;
$conf['cache_backends'|[]1= ‘./path /to /cache_second_mechanism.inc’;
$conf[‘cache_class_<bin>’] = ‘CACHECLASS’;
$conf[‘cache_default_class’] = ‘SECONDCACHECLASS’;

Allows you to use a custom caching module.

Can even use this to completely disable caching (DO NOT USE ON A
PRODUCTION SITE!)
Contrib modules
Cache Router (D6)
APC (D7)
Very fast.

Limited to caching on one web server (cache cannot get reused over multiple servers —
can be good or bad.)

Memcached

Distributed object caching in memory.
Written by danga for Livelournal
Lives in memory
Can span multiple servers.
Seamless for D6, D7

D7 is still undergoing some changes.

Hash own requirements (apache needs to be restarted,
have to clear old caches)

Slower than APC, but scalable.
Takes load off DB server (yayl)

Search Mechanism

Drupal core search
Need | say anything?

Search API looks to be a much more promising (not to mention
flexible!) option.

Pluggable system to support various types of backends.
Search APl MongoDB, Search APl Xapian

Supports Views.

Proposal to include in D8 (core conversation at DC London).
LuceneAPI

Not as fast as ApacheSolr.

Easy to setup.

Google CSE might also be a good fit.

ApacheSolr

ApacheSolr
Very fast.

Easy to configure on *nix systems.

Requires a server on which Java can be installed.

More and more companies offering Solr as a Service (take
load off your systems altogether).
Available as Drupal Module.

Apachesolr (very mature)

Search APl apachesolr (very promising)

Views Plugin so even drive non-search related pages using
Solr!

Other options

Using an optimized distribution
Pressflow (for D6)

Only supports MySQL

Cleanly supports reverse proxies such as Varnish
Optimized for PHP5

Pressflow for D7 is currently identical to D7

Talks about abandoning MySQL in favor of a MongoDB/
Cassandra DB architecture.

Many of the improvements made for Pressflow are in D7 core.

Keep in mind that a faster Drupal Core won’t save you from
contrib modules behaving badly.

Other options (cont’d)

Patching Drupal / Contrib
‘Hack core’
Need to know what you are doing.
Sometimes necessary.

Create a patches directory where all the changes you
make for a core/contrib file can be tracked and easily
applied on updates.

Create own module and do any necessary schema
updates / alters from there.

Past experiences from Drupal Core

User login on zimmertwins.com was painfully slow (5+
seconds per user)

Gist of problem: DB not using index on username due to lower()
Bug had been around since 2006.

Solution: Modified patch on D.O for site.

User login time down to 0.1 seconds.

Pressflow avoids this by not allowing case-insensitve login.

Comments did not have index on user ID

Created index on user id as an update from my module.
If added in future, can remove my version of index.

Loading for comment by user no longer an issue.

Advice for developers

Take advantage of caching.
Use memory wisely.

Unset the variable if you don’t have a need for it later.

Save variable to memory for future use so processing isn’t
done multiple times (see drupal_static()).

Take advantage of AHAH functionality
Fewer queries.
Not reloading the page.
Saving bandwidth.

Learn to use jQuery (same as above).
Pay close attention to what

Possibly related sessions

Note: Some have passed (but check out their screencasts)
Drupal on the Cloud
Patrick Wall
Drupal Development Q&A
Drupal 7 Q&A

Building APIs
Adam Gregory

Professional Staging and Deployment
Christefano

Understanding Ctools
Helior Colorado

Questions

Have a question?

Want to talk more about performance?
Let’s talk after ©

Think you can help with Drupal performance?

Thank you ©

