DRUPAL — FRONTEND
PERFORMANCE

About me

Computer Systems Analyst at the California Institute
of the Arts ()

See my profile at
Read my thoughts at
Strong interest in Server Optimization.

Frontend and Backend

About this presentation

“Backend” optimizations to speed up the frontend.
Show settings to tune on server for faster downloads by user
Useful modules.

Unless stated, assuming backend server is apache

CSS & Javascript
Things to help make it faster.

There will be some level of back and forth between the
two.

Have a question? Ask!

Have something to share? Come on up!

Resources

Konstantin Kaefer
Steve Souders

Wim Leers

Addy Osmani

Goals

Define your objectives and goals first

Do you want a faster response to the end user per page?

Do you want to handle more page views?

Do you want to minimize downtime?
Related...but different
Sometimes, there are ‘low hanging fruit’ that are easy to see
and provide noticeable improvements
Gets hard to achieve more performance (more effort, fewer
gains)

More infrastructure?

Revisions at the JS/CSS Layer?

Revisions at the theme layer?

Diagnosis

Proper diagnosis is essential before proposing and
implementing a solution, or you’re running blind.

Based on proper data.

Analyze.

Can lead to a few possible paths of optimization.

Points of optimization.

Introduction
Tools to measure and diagnose

Speed optimizations

‘Medid’

Loading images, stylesheets, javascript can account
for more than 80% of total load time.

Overall load time?

Page size?

Time until DOM is loaded?

Time until page is rendered?

Time until
. Images
page is - . Back- 5
@SS Scripts
functional? = P grounds Me+dia

Tools to measure and diagnose

Firebug’s Net Panel

Track loading time for stylesheets, javascript, images, and total page load time.
Yslow

Rates a webpage based on many criteria.

Determines overall load time.

Provides optimization suggestions.

Provides page statistics.
Google Page Speed

Similar to Yslow.

Provides suggestions on improving CSS, optimizing image files, and minimizing
javascript.

Google Chrome Developer Panel
Very powerful.
Auditor helps track speed of js.

Tools to measure and diagnose (cont’d)

Episodes
Aimed to measure timing of web 2.0 applications.
Granular measurements on how sections perform.

Drupal module ()

[demready - 795

Non-Browser Tools

AOL Page Test
Pingdom

Waterfall diagram
JSPerf

Test out snippets of javascript

CSSlLint

Check and see suggestions on improving your CSS.

Backend Suggestion 1: Reduce
Requests

Every file produces an HTTP Request

Fewer requests of large files are better than many
smaller files (fewer server resources per user).

Current browsers can download atleast 4
components per host in parallel.

60s

45s

O Requests

30s ')
O Size

15s

0s O

Reduce Requests (cont’d)

Combine sprites together 4 GO« 0 l
Many images in one file.

Shift into view with CSS via GO ()gle
(=)=]x]

background-position.

Aggregate scripts and styles COPY Checkout 2 N =
Built into Drupal

NOTE: Drupal 7 splits up into many more files than before.
Not as ‘efficient’ in some ways as Dé.

Pay attention to what happens with Bundle Cache at WPO

()

Reduce Requests (cont’d)

Use CSS instead of images

border-radius, -moz-border-radius,
-webkit-border-radius for rounded corners

Use image data in CSS

background:url(data:image /gif;base64,ROIGODIhNEAAOALMAAOazToeHhOLS /7LZv /Ojvb 29t/
f3//Ub/ /ge8WSLf/rhf/3kdbW ImxsbP//mf///
yH5BAAAAAAALAAAAAAQAA4AAARe8LTEkyky67QZ1hLnjM5UUdeOECwLIoEXK
cppV0aCcGCmTIHEIUEqjgaORCMxIC6e0CcguWwbaFisVMkklr7g77ZKPJiPZqlyd7sJAgVGoEG
v2xsBxqNgYPj/gAwWXEQA7) top left no-repeat;)

Similarly, use font-data in CSS

Backend Suggestion 2: CDN

Content Delivery Network.
Lots of servers scattered around the world.
Reduces roundtrip times.

Example: using a CDN on one of my

sites increased the requests/second
from 150 r/s to 200 r/s. aiont e Y

Can be inexpensive for hosting ¢
static files (7 cents/ GB) Response

Akamai
MaxCDN
Cachefly

Amazon Cloudfront

Request

Softlayer Cloudlayer

Backend Suggestion 3: Caching

]
?
Disabled: { Client 4___% Server

| Full response
A

Default: { Client 4_/-{ Server
: ‘ 'Still fresh”

Cache

Partial response

Aggressive: Client
N

Cache

Caching (cont’d)

Controlled by HTTP Headers
Browsers check if the content is ‘fresh’
Set expires header to a date in the future

<location /css>

ExpiresActive on

ExpiresDefault “access plus 2 weeks”
</location>

ExpiresByType “access plus 1 month”

For nginx: location ~* *.+\ (css | js)$ { expires 30d; }

Change filenames / url when updating.

Backend Suggestion #4: GZIP

Compress text content

<IfModule mod_deflate.c>

AddOutputFilterByType DEFLATE text/css application/
x-javascript

</IfModule>

For nginx:

Vastly reduces page size

: 700kb -> 380kb (CSS went down
from 120kb to 25kb)

Backend Suggestion #5: Parallelization

Most browsers allow for more than 2 connections per host
IE8+: 6
FF3+: 6
Chrome: 6
Safari: 4
Opera: 4
More hosts = more parallel downloads at same time.

Don’t overdo it!
CDN |)

Doesn’t have to be tied to a CDN

Point to your server with a different domain and users can
download more of page at same time.

Backend Suggestion #6: Persistent
HTTP

Apache / NGINX support persistent connections

multiple connections persistent connection
client server client server

OPEN mfue OPEN mfu
\) D

«—

close ——‘f—,/ \)

OPEN e ~+
I « | 3
«— | I ®

CloSE mfumm ‘____________..-——-———-“

open __\) CloSe mmtum
<« |

ClOSE e

\/ \/ \ 4 \

Reconnecting over and over again takes time.

Make sure KeepAlive is not turned off.

Backend Suggestion #7: Remove
unnecessary cruft

Apache enables ‘modules’ like mod_cgi,
mod_proxy, mod_dav by default.

More likely than not, you do not need them.

Disabling will lower the memory usage by apache on a
per connection basis.

More users.

NginX starts off fairly lightweight and you have to
add modules.

Varnish makes no difference.

Theme Suggestion #1: CSS on TOP

Placed in <head>
Page is rendered when all ¢css in header is loaded

Loading CSS later causes re-rendering and user will
see flash of unstyled content.

<link> is faster than @import

But @import allows to use more than 32 files from IE
restriction.

Drupal automatically handles itself between the two ©

Theme Suggestion #2

Placed right before </body>.

Loading scripts blocks page rendering.

Downloading JS files will block downloads of other file

types.
Scripts are downloaded sequentially.

Use graceful degradation.

Don’t have onfoo event handlers in the code.

JS at the BOTTOM

Theme Suggestion #3: Minify JS/CSS

Remove comments / whitespace.
Great savings, even more with gzip

No real modules for D7

Simple solution: Create a regular version of your file(s).
Use a 3™ party tool (Google Closure Compiler) to
minify /pack and use that.

CSS is slightly minified. But use Page Speed to get rid
of unused CSS.

Theme Suggestion #4: Reduce image
size

OptiPNG, PNGCrush

Removes invisible content
Lossless compression
JPEGTran/Imagemagick

Remove color profiles / metadata
Lossless JPEG operations

Google Page Speed also reports how much image can
be compressed.

User uploaded images can be compress for size by
imagecache (D6) or in core (D7)

Theme suggestion #4: Lazy
initialization

Javascript takes time to initialize.
Libraries such as jQuery also count.
Defer setup work.
Load images only when they need to be displayed.
Initial load on old calarts.edu website: 650kb.
After js lazy load: 250kb.
Only load content above the fold.

Find out more at

Very useful on image heavy sites.

CSS Improvements

For the most part...fairly small gains
Recent recommendations say to try and use classes as
opposed to IDs

Performance difference is tiny.

Classes are much more flexible.
Try to limit yourself to a second level selector (.class-
one .child-class-two) especially if you use CSS3
selectors (.class:not(a), etc)
Google Page Speed helps show which of your selectors
could be improved.

DEMO

iQuery improvements

Newer releases of jQuery are generally faster.

iQuery Update module might be worthwhile to look at.
Small tip: If you are going to call on the same selector(s)
over and over, save them to a variable.

Should be a nice speed boost.
Large area

Not all selectors are created equal ©

ID and Element selectors are the fastest.

Class selectors are slightly slower.

Pseudo /Attribute selectors are the slowest

Can test out a chunk of this at (used by
iQuery team)

iQuery improvements (cont’d)

Context vs. Find vs. Children vs...

Find ($parent.find(‘.child’)) is slightly faster than context
($(‘.child’, $parent)) since the latter has to get parsed.

$parent.children() — 50% slower.
$(‘#parent > .child’) — 70% slower.
$(‘#parent .child) — ~80% slower.

$(‘H#parent’).find(‘.child’) is about 16% slower than the
fastest (since the #parent has to be fetched from the

DOM)

As said before, best to get the $(‘#parent’) object stored
into a variable if it will be reused later.

iQuery improvements (cont’d)

You don’t always have to use jQuery.
$(item).attr(‘id’) is 80 — 90% slower than item.id
Apparently, item.id is also more up-to-date.
Did | mention cache (store the result of) your result to a variable2 ©

— This uncached is 56% slower on my
computer.

Chaining your methods on a selector ($

(‘H#item’).doSomething().doSomethingElse()) is generally faster than
separate calls.

Try and keep your append() calls to a minimum if you absolutely
need them.

Can be very costly (up to 90% decrease in performance)

iQuery optimizations (cont’d)

Try and bind event to as high of a parent as you
possibly can.

Works with child elements at runtime and all those injected
later.

.bind() doesn’t automatically work with dynamically inserted
elements

live() allows for this though you cannot chain methods and really
only for simple tasks.

Working with modifying content by using detach() could
provide a big boost in performance.

while loops are faster than each() and $.each()

Questions?

Interested in talking more? | sure am!

Let’s talk after ©
What other presentations might be related and/or
useful?

Drupal Design Skills 2012

Drupal Theme Design Q&A Panel

Designing Future Proof Websites

Thank you! ©

