
DRUPAL – FRONTEND
PERFORMANCE
Ashok Modi – DrupalCampLA 2011

About me

  Computer Systems Analyst at the California Institute
of the Arts (http://calarts.edu)
 See my profile at http://drupal.org/user/60422
 Read my thoughts at http://btmash.com/

  Strong interest in Server Optimization.
 Frontend and Backend

About this presentation

  “Backend” optimizations to speed up the frontend.
 Show settings to tune on server for faster downloads by user
 Useful modules.
 Unless stated, assuming backend server is apache

  CSS & Javascript
 Things to help make it faster.

  There will be some level of back and forth between the
two.

  Have a question? Ask!
  Have something to share? Come on up!

Resources

  Konstantin Kaefer
 http://kkaefer.com

  Steve Souders
 http://stevesouders.com/blog

  Wim Leers
 http://wimleers.com

  Addy Osmani
 http://addyosmani.com

Goals

  Define your objectives and goals first
 Do you want a faster response to the end user per page?
 Do you want to handle more page views?
 Do you want to minimize downtime?

  Related…but different
  Sometimes, there are ‘low hanging fruit’ that are easy to see

and provide noticeable improvements
  Gets hard to achieve more performance (more effort, fewer

gains)
 More infrastructure?
  Revisions at the JS/CSS Layer?
  Revisions at the theme layer?

Diagnosis

  Proper diagnosis is essential before proposing and
implementing a solution, or you’re running blind.

  Based on proper data.
 Analyze.

  Can lead to a few possible paths of optimization.

Points of optimization.

1  Introduction
2  Tools to measure and diagnose
3  Speed optimizations

‘Media’

  Loading images, stylesheets, javascript can account
for more than 80% of total load time.
 Overall load time?
 Page size?
 Time until DOM is loaded?
 Time until page is rendered?
 Time until

page is
functional?

Tools to measure and diagnose

  Firebug’s Net Panel
  Track loading time for stylesheets, javascript, images, and total page load time.

  Yslow
  Rates a webpage based on many criteria.
  Determines overall load time.
  Provides optimization suggestions.
  Provides page statistics.

  Google Page Speed
  Similar to Yslow.
  Provides suggestions on improving CSS, optimizing image files, and minimizing

javascript.
  Google Chrome Developer Panel

  Very powerful.
  Auditor helps track speed of js.

Tools to measure and diagnose (cont’d)

  Episodes
 Aimed to measure timing of web 2.0 applications.
 Granular measurements on how sections perform.
 Drupal module (http://drupal.org/project/episodes)

Non-Browser Tools

  AOL Page Test
 http://webpagetest.org

  Pingdom
 http://tools.pingdom.com
 Waterfall diagram

  JSPerf
 http://jsperf.com
 Test out snippets of javascript

  CSSLint
 http://csslint.com
 Check and see suggestions on improving your CSS.

Backend Suggestion 1: Reduce
Requests

  Every file produces an HTTP Request
  Fewer requests of large files are better than many

smaller files (fewer server resources per user).
  Current browsers can download atleast 4

components per host in parallel.

Reduce Requests (cont’d)

  Combine sprites together
 Many images in one file.
 Shift into view with CSS via

background-position.

  Aggregate scripts and styles
 Built into Drupal
 NOTE: Drupal 7 splits up into many more files than before.

 Not as ‘efficient’ in some ways as D6.
 Pay attention to what happens with Bundle Cache at WPO

(http://drupal.org/project/wpo)

Reduce Requests (cont’d)

  Use CSS instead of images
 border-radius, -moz-border-radius,

-webkit-border-radius for rounded corners

  Use image data in CSS
 background:url(

f3//Ub/ /ge8WSLf/rhf/3kdbW1mxsbP//mf///
yH5BAAAAAAALAAAAAAQAA4AAARe8L1Ekyky67QZ1hLnjM5UUde0ECwLJoExK
cppV0aCcGCmTIHEIUEqjgaORCMxIC6e0CcguWw6aFjsVMkkIr7g77ZKPJjPZqIyd7sJAgVGoEG
v2xsBxqNgYPj/gAwXEQA7) top left no-repeat;)

 Similarly, use font-data in CSS

Backend Suggestion 2: CDN

  Content Delivery Network.
  Lots of servers scattered around the world.
  Reduces roundtrip times.
  Example: using a CDN on one of my

sites increased the requests/second
from 150 r/s to 200 r/s.

  Can be inexpensive for hosting
static files (7 cents/ GB)

  Akamai
  MaxCDN
  Cachefly
  Amazon Cloudfront
  Softlayer Cloudlayer

Backend Suggestion 3: Caching

Caching (cont’d)

  Controlled by HTTP Headers
  Browsers check if the content is ‘fresh’
  Set expires header to a date in the future
  <location /css>

ExpiresActive on
ExpiresDefault “access plus 2 weeks”
</location>
ExpiresByType “access plus 1 month”

  For nginx: location ~* ^.+\.(css|js)$ { expires 30d; }
  Change filenames / url when updating.

Backend Suggestion #4: GZIP

  Compress text content
 <IfModule mod_deflate.c>

AddOutputFilterByType DEFLATE text/css application/
x-javascript
</IfModule>

 For nginx: http://goo.gl/PeDp

  Vastly reduces page size
 http://redcat.org: 700kb -> 380kb (CSS went down

from 120kb to 25kb)

Backend Suggestion #5: Parallelization

  Most browsers allow for more than 2 connections per host
  IE8+: 6
  FF3+: 6
 Chrome: 6
  Safari: 4
 Opera: 4

  More hosts = more parallel downloads at same time.
 Don’t overdo it!

  CDN (http://drupal.org/project/cdn)
 Doesn’t have to be tied to a CDN
  Point to your server with a different domain and users can

download more of page at same time.

Backend Suggestion #6: Persistent
HTTP

  Apache / NGINX support persistent connections

  Reconnecting over and over again takes time.
  Make sure KeepAlive is not turned off.

Backend Suggestion #7: Remove
unnecessary cruft

  Apache enables ‘modules’ like mod_cgi,
mod_proxy, mod_dav by default.
 More likely than not, you do not need them.
 Disabling will lower the memory usage by apache on a

per connection basis.
 More users.

  NginX starts off fairly lightweight and you have to
add modules.

  Varnish makes no difference.

Theme Suggestion #1: CSS on TOP

  Placed in <head>
  Page is rendered when all css in header is loaded
  Loading CSS later causes re-rendering and user will

see flash of unstyled content.
  <link> is faster than @import

 But @import allows to use more than 32 files from IE
restriction.

 Drupal automatically handles itself between the two 

Theme Suggestion #2

  Placed right before </body>.
  Loading scripts blocks page rendering.

 Downloading JS files will block downloads of other file
types.

  Scripts are downloaded sequentially.
  Use graceful degradation.

 Don’t have onfoo event handlers in the code.

JS at the BOTTOM

Theme Suggestion #3: Minify JS/CSS

  Remove comments / whitespace.
  Great savings, even more with gzip
  No real modules for D7

 Simple solution: Create a regular version of your file(s).
Use a 3rd party tool (Google Closure Compiler) to
minify/pack and use that.

 CSS is slightly minified. But use Page Speed to get rid
of unused CSS.

Theme Suggestion #4: Reduce image
size
  OptiPNG, PNGCrush

 Removes invisible content
 Lossless compression

  JPEGTran/Imagemagick
 Remove color profiles / metadata
 Lossless JPEG operations

  http://smushit.com
  Google Page Speed also reports how much image can

be compressed.
  User uploaded images can be compress for size by

imagecache (D6) or in core (D7)

Theme suggestion #4: Lazy
initialization

  Javascript takes time to initialize.
 Libraries such as jQuery also count.
 Defer setup work.

  Load images only when they need to be displayed.
 Initial load on old calarts.edu website: 650kb.
 After js lazy load: 250kb.

  Only load content above the fold.
 Find out more at http://goo.gl/lpH4r
 Very useful on image heavy sites.

CSS Improvements

  For the most part…fairly small gains
  Recent recommendations say to try and use classes as

opposed to IDs
 Performance difference is tiny.
 Classes are much more flexible.

  Try to limit yourself to a second level selector (.class-
one .child-class-two) especially if you use CSS3
selectors (.class:not(a), etc)

  Google Page Speed helps show which of your selectors
could be improved.

  DEMO

jQuery improvements

  Newer releases of jQuery are generally faster.
  jQuery Update module might be worthwhile to look at.

  Small tip: If you are going to call on the same selector(s)
over and over, save them to a variable.
  Should be a nice speed boost.

  Large area
 Not all selectors are created equal 
  ID and Element selectors are the fastest.
 Class selectors are slightly slower.
  Pseudo/Attribute selectors are the slowest

  Can test out a chunk of this at http://jsperf.com (used by
jQuery team)

jQuery improvements (cont’d)

  Context vs. Find vs. Children vs…
  Find ($parent.find(‘.child’)) is slightly faster than context

($(‘.child’, $parent)) since the latter has to get parsed.
  $parent.children() – 50% slower.
  $(‘#parent > .child’) – 70% slower.
  $(‘#parent .child) – ~80% slower.
  $(‘#parent’).find(‘.child’) is about 16% slower than the

fastest (since the #parent has to be fetched from the
DOM)
 As said before, best to get the $(‘#parent’) object stored

into a variable if it will be reused later.

jQuery improvements (cont’d)

  You don’t always have to use jQuery.
  $(item).attr(‘id’) is 80 – 90% slower than item.id

  Apparently, item.id is also more up-to-date.

  Did I mention cache (store the result of) your result to a variable? 
  http://jsperf.com/ns-jq-cached – This uncached is 56% slower on my

computer.
  Chaining your methods on a selector ($

(‘#item’).doSomething().doSomethingElse()) is generally faster than
separate calls.

  Try and keep your append() calls to a minimum if you absolutely
need them.
  Can be very costly (up to 90% decrease in performance)

jQuery optimizations (cont’d)

  Try and bind event to as high of a parent as you
possibly can.
 Works with child elements at runtime and all those injected

later.
  .bind() doesn’t automatically work with dynamically inserted

elements
  .live() allows for this though you cannot chain methods and really

only for simple tasks.

  Working with modifying content by using detach() could
provide a big boost in performance.

  while loops are faster than each() and $.each()

Questions?

  Interested in talking more? I sure am!
 Let’s talk after 

  What other presentations might be related and/or
useful?
 Drupal Design Skills 2012
 Drupal Theme Design Q&A Panel
 Designing Future Proof Websites

  Thank you! 

