
DRUPAL – FRONTEND
PERFORMANCE
Ashok Modi – DrupalCampLA 2011

About me

  Computer Systems Analyst at the California Institute
of the Arts (http://calarts.edu)
 See my profile at http://drupal.org/user/60422
 Read my thoughts at http://btmash.com/

  Strong interest in Server Optimization.
 Frontend and Backend

About this presentation

  “Backend” optimizations to speed up the frontend.
 Show settings to tune on server for faster downloads by user
 Useful modules.
 Unless stated, assuming backend server is apache

  CSS & Javascript
 Things to help make it faster.

  There will be some level of back and forth between the
two.

  Have a question? Ask!
  Have something to share? Come on up!

Resources

  Konstantin Kaefer
 http://kkaefer.com

  Steve Souders
 http://stevesouders.com/blog

  Wim Leers
 http://wimleers.com

  Addy Osmani
 http://addyosmani.com

Goals

  Define your objectives and goals first
 Do you want a faster response to the end user per page?
 Do you want to handle more page views?
 Do you want to minimize downtime?

  Related…but different
  Sometimes, there are ‘low hanging fruit’ that are easy to see

and provide noticeable improvements
  Gets hard to achieve more performance (more effort, fewer

gains)
 More infrastructure?
  Revisions at the JS/CSS Layer?
  Revisions at the theme layer?

Diagnosis

  Proper diagnosis is essential before proposing and
implementing a solution, or you’re running blind.

  Based on proper data.
 Analyze.

  Can lead to a few possible paths of optimization.

Points of optimization.

1  Introduction
2  Tools to measure and diagnose
3  Speed optimizations

‘Media’

  Loading images, stylesheets, javascript can account
for more than 80% of total load time.
 Overall load time?
 Page size?
 Time until DOM is loaded?
 Time until page is rendered?
 Time until

page is
functional?

Tools to measure and diagnose

  Firebug’s Net Panel
  Track loading time for stylesheets, javascript, images, and total page load time.

  Yslow
  Rates a webpage based on many criteria.
  Determines overall load time.
  Provides optimization suggestions.
  Provides page statistics.

  Google Page Speed
  Similar to Yslow.
  Provides suggestions on improving CSS, optimizing image files, and minimizing

javascript.
  Google Chrome Developer Panel

  Very powerful.
  Auditor helps track speed of js.

Tools to measure and diagnose (cont’d)

  Episodes
 Aimed to measure timing of web 2.0 applications.
 Granular measurements on how sections perform.
 Drupal module (http://drupal.org/project/episodes)

Non-Browser Tools

  AOL Page Test
 http://webpagetest.org

  Pingdom
 http://tools.pingdom.com
 Waterfall diagram

  JSPerf
 http://jsperf.com
 Test out snippets of javascript

  CSSLint
 http://csslint.com
 Check and see suggestions on improving your CSS.

Backend Suggestion 1: Reduce
Requests

  Every file produces an HTTP Request
  Fewer requests of large files are better than many

smaller files (fewer server resources per user).
  Current browsers can download atleast 4

components per host in parallel.

Reduce Requests (cont’d)

  Combine sprites together
 Many images in one file.
 Shift into view with CSS via

background-position.

  Aggregate scripts and styles
 Built into Drupal
 NOTE: Drupal 7 splits up into many more files than before.

 Not as ‘efficient’ in some ways as D6.
 Pay attention to what happens with Bundle Cache at WPO

(http://drupal.org/project/wpo)

Reduce Requests (cont’d)

  Use CSS instead of images
 border-radius, -moz-border-radius,

-webkit-border-radius for rounded corners

  Use image data in CSS
 background:url(

f3//Ub/ /ge8WSLf/rhf/3kdbW1mxsbP//mf///
yH5BAAAAAAALAAAAAAQAA4AAARe8L1Ekyky67QZ1hLnjM5UUde0ECwLJoExK
cppV0aCcGCmTIHEIUEqjgaORCMxIC6e0CcguWw6aFjsVMkkIr7g77ZKPJjPZqIyd7sJAgVGoEG
v2xsBxqNgYPj/gAwXEQA7) top left no-repeat;)

 Similarly, use font-data in CSS

Backend Suggestion 2: CDN

  Content Delivery Network.
  Lots of servers scattered around the world.
  Reduces roundtrip times.
  Example: using a CDN on one of my

sites increased the requests/second
from 150 r/s to 200 r/s.

  Can be inexpensive for hosting
static files (7 cents/ GB)

  Akamai
  MaxCDN
  Cachefly
  Amazon Cloudfront
  Softlayer Cloudlayer

Backend Suggestion 3: Caching

Caching (cont’d)

  Controlled by HTTP Headers
  Browsers check if the content is ‘fresh’
  Set expires header to a date in the future
  <location /css>

ExpiresActive on
ExpiresDefault “access plus 2 weeks”
</location>
ExpiresByType “access plus 1 month”

  For nginx: location ~* ^.+\.(css|js)$ { expires 30d; }
  Change filenames / url when updating.

Backend Suggestion #4: GZIP

  Compress text content
 <IfModule mod_deflate.c>

AddOutputFilterByType DEFLATE text/css application/
x-javascript
</IfModule>

 For nginx: http://goo.gl/PeDp

  Vastly reduces page size
 http://redcat.org: 700kb -> 380kb (CSS went down

from 120kb to 25kb)

Backend Suggestion #5: Parallelization

  Most browsers allow for more than 2 connections per host
  IE8+: 6
  FF3+: 6
 Chrome: 6
  Safari: 4
 Opera: 4

  More hosts = more parallel downloads at same time.
 Don’t overdo it!

  CDN (http://drupal.org/project/cdn)
 Doesn’t have to be tied to a CDN
  Point to your server with a different domain and users can

download more of page at same time.

Backend Suggestion #6: Persistent
HTTP

  Apache / NGINX support persistent connections

  Reconnecting over and over again takes time.
  Make sure KeepAlive is not turned off.

Backend Suggestion #7: Remove
unnecessary cruft

  Apache enables ‘modules’ like mod_cgi,
mod_proxy, mod_dav by default.
 More likely than not, you do not need them.
 Disabling will lower the memory usage by apache on a

per connection basis.
 More users.

  NginX starts off fairly lightweight and you have to
add modules.

  Varnish makes no difference.

Theme Suggestion #1: CSS on TOP

  Placed in <head>
  Page is rendered when all css in header is loaded
  Loading CSS later causes re-rendering and user will

see flash of unstyled content.
  <link> is faster than @import

 But @import allows to use more than 32 files from IE
restriction.

 Drupal automatically handles itself between the two

Theme Suggestion #2

  Placed right before </body>.
  Loading scripts blocks page rendering.

 Downloading JS files will block downloads of other file
types.

  Scripts are downloaded sequentially.
  Use graceful degradation.

 Don’t have onfoo event handlers in the code.

JS at the BOTTOM

Theme Suggestion #3: Minify JS/CSS

  Remove comments / whitespace.
  Great savings, even more with gzip
  No real modules for D7

 Simple solution: Create a regular version of your file(s).
Use a 3rd party tool (Google Closure Compiler) to
minify/pack and use that.

 CSS is slightly minified. But use Page Speed to get rid
of unused CSS.

Theme Suggestion #4: Reduce image
size
  OptiPNG, PNGCrush

 Removes invisible content
 Lossless compression

  JPEGTran/Imagemagick
 Remove color profiles / metadata
 Lossless JPEG operations

  http://smushit.com
  Google Page Speed also reports how much image can

be compressed.
  User uploaded images can be compress for size by

imagecache (D6) or in core (D7)

Theme suggestion #4: Lazy
initialization

  Javascript takes time to initialize.
 Libraries such as jQuery also count.
 Defer setup work.

  Load images only when they need to be displayed.
 Initial load on old calarts.edu website: 650kb.
 After js lazy load: 250kb.

  Only load content above the fold.
 Find out more at http://goo.gl/lpH4r
 Very useful on image heavy sites.

CSS Improvements

  For the most part…fairly small gains
  Recent recommendations say to try and use classes as

opposed to IDs
 Performance difference is tiny.
 Classes are much more flexible.

  Try to limit yourself to a second level selector (.class-
one .child-class-two) especially if you use CSS3
selectors (.class:not(a), etc)

  Google Page Speed helps show which of your selectors
could be improved.

  DEMO

jQuery improvements

  Newer releases of jQuery are generally faster.
  jQuery Update module might be worthwhile to look at.

  Small tip: If you are going to call on the same selector(s)
over and over, save them to a variable.
  Should be a nice speed boost.

  Large area
 Not all selectors are created equal
  ID and Element selectors are the fastest.
 Class selectors are slightly slower.
  Pseudo/Attribute selectors are the slowest

  Can test out a chunk of this at http://jsperf.com (used by
jQuery team)

jQuery improvements (cont’d)

  Context vs. Find vs. Children vs…
  Find ($parent.find(‘.child’)) is slightly faster than context

($(‘.child’, $parent)) since the latter has to get parsed.
  $parent.children() – 50% slower.
  $(‘#parent > .child’) – 70% slower.
  $(‘#parent .child) – ~80% slower.
  $(‘#parent’).find(‘.child’) is about 16% slower than the

fastest (since the #parent has to be fetched from the
DOM)
 As said before, best to get the $(‘#parent’) object stored

into a variable if it will be reused later.

jQuery improvements (cont’d)

  You don’t always have to use jQuery.
  $(item).attr(‘id’) is 80 – 90% slower than item.id

  Apparently, item.id is also more up-to-date.

  Did I mention cache (store the result of) your result to a variable?
  http://jsperf.com/ns-jq-cached – This uncached is 56% slower on my

computer.
  Chaining your methods on a selector ($

(‘#item’).doSomething().doSomethingElse()) is generally faster than
separate calls.

  Try and keep your append() calls to a minimum if you absolutely
need them.
  Can be very costly (up to 90% decrease in performance)

jQuery optimizations (cont’d)

  Try and bind event to as high of a parent as you
possibly can.
 Works with child elements at runtime and all those injected

later.
  .bind() doesn’t automatically work with dynamically inserted

elements
  .live() allows for this though you cannot chain methods and really

only for simple tasks.

  Working with modifying content by using detach() could
provide a big boost in performance.

  while loops are faster than each() and $.each()

Questions?

  Interested in talking more? I sure am!
 Let’s talk after

  What other presentations might be related and/or
useful?
 Drupal Design Skills 2012
 Drupal Theme Design Q&A Panel
 Designing Future Proof Websites

  Thank you!

